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The following changes should be made:

X
Page 7: u parameter u =
/aKt

Page 16: Equation (7) should read:

tan a
y=

2 [JTKT exp (-u2) - x /v E (u)] '

™
and the line following equation (7) should read:

where u = X , and E (u) is the Fresnel integral,

/4Kt

(7)
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PREFACE

This report is published to provide coastal engineers with a litera-
ture survey on mathematical modeling of shoreline evolution, which it is
hoped will lead the way in establishing a flexible and practical numerical
method suitable for predicting shoreline evolution resulting from the
construction of navigation and shore structures. The work was carried out
under the coastal structures program of the Coastal Engineering Research
Center (CERC).

The report was prepared by Bernard Le Mehaute, senior vice president,
and Mills Soldate, Tetra Tech, Inc., Pasadena, California, under CERC
Contract No. DACW72-7T-C-0002. Funds for the preparation of this litera-
ture review part of the contract were provided by the.U ’S. Army Engineer
Division, North Central, Chicago, Illinois.

The authors acknowledge the assistance of Dr. J.R. Weggel, CERC, and
Mr. C. Johnson, U.S. Army Engineer District, Chicago, in providing a list
of papers on the subject matter, along with pertinent comments relevant
to the situation in the Great Lakes.

Dr. Weggel was the CERC contract monitor for the report, under the

general supervision of G.M. Watts, Chief, Engineering Development Division.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th
Congress, approved 31 July 1945, as supplemented by Public Law 172,
88th Congress, approved 7 November 1963.

OHN H. COUSINS
Colonel, Corps of Engineers
Commander and Director
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CONVERSION FACTORS, U.S. CUSTOJARY TO METRIC (SI)
UNITS OF MEASUREMENT

U.S. customary units of measurcment uscd in this report can be converted
to metric (SI) units as follows:

=== S P SRS S e— P a— D —

Multiply by To obtain

= e R B - S 5 a - EP——

inches 25.4 millimeters
2.54 centimeters
square inches 6,452 square centimeters
cubic inches 16. 3¢ cubic centimeters
feet 30.48 centimeters
0.3048 meters
square feet 0.0929 square meters
cubic feet 0.0283 cubic meters
yards 0.9144 meters '
square yards 0.836 square meters
cubic yards 0.7646 cubic meters
miles 1.6093 kilometers
square miles 259.0 hectares :
knots 1.8532 kilometers per hour '
acres 0.4047 hectares
foot-pounds 1.3558 newton meters
millibars 1.0197 x 1073 kilograms per square centimeter
ounces 28.35 grams
pounds 453.6 grams
0.4536 kilograms
ton, long 1.0160 metric tons
ton, short 0.9072 metric tons
degrees (angle) 0.1745 radians
Fahrenheit degrecs 5/9 Celsius degrees or Kelvins!

Ito obtain Celsius (C) tempcrature rcadings from Fahrenheit (F) readings,
use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.
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SYMBOLS AND DEFINITIONS

time

horizontal axis at S W L parallel to the (initial) beach profile

horizontal axis at S W L perpendicular to the (initial) beach
profile

beach depth (depth beyond which sediment transport is negligible)

wave angle with beach profile

wave angle with beach profile at infinity

longshore transport (littoral drift) discharge

- y LG,
constant = & = ' :

(3 ] i e

[
arameter u = ——
g 4Kt
: R
Fresnel integral = E(u) = Lo e N 4
Vu u

length of groin

time for the beach profile to reach the end of the groin

transform time t; = O.62tl

sinusoidal beach amplitude (at time t = o)




parameter related to beach wavelength L:A = ('1') K

parametric value of x defining volume of beach dumping
parametric value of y defining volume of beach dumping
parameter used to define hypocycloid beach profile between

headlands

coefficients used in the littoral drift formula to
characterize the effect of wave angle

breaking wave height
water depth at inception of wave breaking
group velocity

littoral drift constant 6.42 x 10°°

distance of shoreline from a horizontal axis parallel to the
initial beach profile

distance of the offshore beach limit from a horizontal axis
parallel to the initial beach profile

equilibrium distance y, - Y




a,

-t

onshore-offshore transport per unit length of beach
e . ur =]

onshore-offshore transport parameter (dimension LT °)

longshore sand transport discharge in shallow water

longshore sand transport in deeper water

distance of the beach profile to a spiral center
angle parameter in mathematical description of hooked bays
spiral angle in mathematical description of hooked bays

depth of hooked bays

distance between headlands
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MATHEMATICAL MODELING OF SHORELINE EVOLUTION
by
Bernard Le Mehaute and Mills Soldate

L. INTRODUCTION

This interim report presents a critical literature survey on the
subject of mathematical modeling of shoreline evolution. Hopefully,
this review will lead the way in establishing a flexible and practical
numerical method suitable to predict shoreline evolution, resulting
from the construction of navigation and shore protection structures in
the Great Lakes.

To focus attention on the most pertinent literature, the subject
under consideration is limited to long-term shoreline evolution as
defined below.

Three time scales of shoreline evolution can be distinguished:
(a) Geological evolution taking place over centuries;
(b) 1long-term evolution from year-to-year or decade; and

(¢) short-term or seasonal evolution and evolution
taking place during a major storm.

Associated with these time scales are distances or ranges of influ-
ence over which changes occur. The geological time scale deals, for
instance, with the entire area of the Great Lakes. The long-term
evolution deals with a more limited stretch of shoreline and range of
influence; e.g., between two headlands or between two harbor entrances.
The short-term evolution deals with the intricacies of the surf zone
circulation; e.g., summer profile-winter profile, bar, rhythmic beach
patterns, etc.

For the problem under consideration, long-term evolution is of pri-
mary importance, the short-term evolution appearing as a superimposed per-
turbation on the general beach profile. Evolution of the coastline is
characterized by low monotone variations or trends on which are super-
imposed short bursts of rapid development associated with storms.

The primary cause of long-term cvolution is water waves or wave-
generated currents. Three phenomena intervene in the action which
waves have on shoreline evolution:

(a) Erosion of beach material by short period seas versus
accretion by longer period swells;

Preceding Pgge TLawk - 52;,’,;




(b) effect of (lake) level changes on erosion; and

(¢) effect of breakwaters, groins, and other structures.

Even though mathematical modeling of shoreline evolution has in-
spired some research, it has received only limited attention from
practicing engineers. The present methodology is based mainly on

(a) the local experience of engineers who have a deep knowledge
of their sectors, understand littoral process, and have an inherent
intuition of what should happen; and

(b) movable-bed scale models that require extensive field data
for their calibration.

In the past, theorists have been dealing with idealized situations,
rarely encountered in engineering practice. It seems that mathematical
modelers have long been discouraged by the inherent complexity of the
phenomena encountered in coastal morphology. The lack of well-accepted
laws of sediment transport, offshore-onshore movement, and poor wave
climate statistics have made the task of calibrating mathematical
models very difficult.

Considering, on one hand, the importance of the subject of deter-
mining the effect of construction of long groins and navigation
structures and on the other, the progress which has been made in
determining wave climate and littoral drift, it now appears that a
mathematical approach could be useful.

The complexity of beach phenomena could, to a large extent, be
taken into account by means of numerical mathematical scheme, (instead
of in closed-form solutions), dividing space and time intervals into
small elements, in which the inherent complexity of the morphology
could be taken into account.

Furthermore, better knowledge of the wave climate, a necessary in-
put, will allow a better calibration of coastal constants such as
found in the littoral drift formula.

This study emphasizes the relative importance of various reports and
reviews the most important ones. Conclusions based on this review are
presented, pointing out the deficiencies of the state-of-the-art. (Sub-
sequent investigators should attempt to bridge the remaining gaps.)

The reports are presented individually, primarily in chronological
order. Two milestone developments from this survey are reports by
Pelnard-Considere (1956) and by Bakker (1968b). Others are extensions
and refinements, experimental verifications, support papers, numerical
procedures, and side issues, including the latest developments on
"hooked beaches'" or crenulate-shaped bays.




I1. THE FIRST MODEL (PELNARD-CONSIDERE)

The idea of mathematically formulating shoreline evolution is attri-
buted by Bakker (1968a) to Bossen, but no reference to Bossen is given.
The first report which appears in the literature, on mathematical model-
ing of shoreline evolution, is by Pelnard-Considere (1956). His
theoretical developments were substantiated by laboratory experiments
made at Sogreah (Grenoble), France. The experimental results fit the
theoretical results very well. It is surprising that such relatively
simple theory has not been more frequently applied to prototype cases by
the profession (at least as it would appear from the open literature), a
fact which may be attributed to the lack of knowledge of wave climates.

Pelnard-Considere assumed that:

(a) ‘The beach profile remains similar and determined by
the equilibrium profile. Therefore, all contour lines are
parallel. This assumption permits him to consider the problem to
be solved for one contour line only.

(b) The wave direction is constant and makes a small angle
with the shoreline (<20°).

(¢) The longshore transport, Q , is lincarly related to the
tangent of the angle of incidence a +(Q = f(a), f(a) = tan a).

(d) The beach has a fixed (ill-defined) depth, D (Fig. 1).
D is a factor relating erosion retreat to volume removed from
profile, which could be defined by the threshold velocity of
sand under wave action. A practical method of determination
of D 1is given in Section VIII,

Despite the crudeness of these approximations, the Pelnard-Considere
model can be considered as a milestone in demonstrating the feasibility
of mathematical modeling of long-term shoreline evolution. For this
reason, it is judged useful to describe in some detail his theoretical
development.

Consider an axis, ox , parallel to the main coastal direction and
an axis, oy , perpendicular seawards (Fig. 2). The angle the deepwater
wave makes with the axis, ox , is a_. The angle of the wave with the
shoreline « at any location is asSumed to be small; therefore,

o = o —tan-l 3-)_/_
() I X

12

a4 - =~ or a - a = - == 5 (1)

(y = f(x,t) gives the form of the shoreline as function of time t).
The littoral drift Q is a function of angle incidence a and can be
put into a Taylor series:




Figure 1. Beach depth definition.
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Figure 2. Successive beach profiles updrift of a long groin before
bypassing (from LeMehaute and Brebner, 1961).
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3Q
= e JE, P o)
Q Q() da l 5 (a s ) ' (2)
a = a
0
in which Q) denotes the transport, Q , when the angle of the wave
incidence i$ a Substituting equation (1) into equation (2) yields:
9Q ay
= - = — 3
L% Qo [ Ja L ] 9X ' (3)

During the interval of time, dt , the shoreline recedes (or accretes) by
a quantity dy . Therefore, the volume of sand which is removed (or
deposited) over a length of beach, dx , is D dx dy . The quantity is
equal to the difference of longshore transport during time, dt , between
x and x * dx; i.e.,

Q dt and : and ( Q + %% Aty At

1.6,
Q
5% dt
There?ore,
i ég gy, & 00
Ddxd)—ax dxdt e ORE E—B E “ (4)

Substituting the expression for Q , o being small, and defining

il 48
S0 g (5)
OL=0.O |
yield:
2
e R 6
k 852 TUSE (6)

which is the well-known diffusion or heat-flow equation.

K is approximately constant at a given site. Bakker (1968a) found

K equal to 0.4 x 106 cubic meters per meter depth per year, at an exposed
site along the coast of the Netherlands. Equation (6) demonstrates that the

rate of accretion or (erosion), %% , is linearly related to the curvature of

-
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the coast, the derivative of the longshore transport rate with respect

= S d z
to the angle of the wave incidence, a%—’ , and inversely propor-
a = aq
Q

tional to the beach depth, D .

The above equation will be recognized as the well-known diffusion
equation. A number of classical solutions of mathematical physics are
applicable to the diffusion equation when boundary conditions are
specified. Pelnard-Considere (1956) applied his theory to the case of
a littoral barrier or long groin. This case is reviewed below:

The longshore transport rate along a straight, long beach is sudden- .
ly stopped by the construction of a long groin built perpendicular to
the beach (see Fig. 2). The boundary conditions are:

(a) y =o0 for all x when t = o

which characterizes an
initial straight shoreline.

(b) At the groin, the longshore transport rate Q = o which is
realized when the waves approach the shore normally: i.e., when

5%
<
1]

-tan a at x =0

’

€c) Ay o at a large distance updrift ( x = ) , and Q = Qo
X

Q_ is the steady-state longshore transport along a straight beach

for tRe given wave conditions. The solution for the given boundary
conditions is:

tan ao o
Vs VAKt exp (u7) - x Vn E (u) ’ C7)
Vo
where u = Z%f , and E (u) 1is the Fresnel integral,
: 2 3 ul
Eofu) = —= e u du ; 8
\/;__ (8)

Values of E (u) or more frequently, ¢ (u) =1 - E (u)
in tabulated form as given in Table 1:

, can be found




Table 1. u versus ¢ (u).

u 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.2

"~
8

g(u) 0.112 0.223 0.328 0.428 0.520 0.667 0.796 0.910 0.995 1

Fig. 2 illustrates the shoreline evolution as defined by equation (8).
It is interesting that these curves are homothetic with respect to the
orlgin' o ; i.e.,

0A = OB = oC
oA~ oB” oC

The horizontal lengths grow with t , and in particular,

tan o

oy = et 20 Vike' *®
\/TT

A tangent to the shoreline at the groin intersects the initial shoreline

defined by y = o at a point a distance of 2 VKt/m updrift from
the groin.

The ratio of the area of sand accumulation, such as is in oyXg to

the area of sand contained in the triangular fillet, oyx , is 1.56 and

the distance oXp = 2.7 ox . This ratio permits rapid assessment of

the total amount of sand accumulated updrift from a single measurement
of the angle a s and determination of D as shown in Section IV.

The end of the groin of length, oy = & , is reached when

2
P 5 : (10)

4K tan2a
o

When t > t. , the boundary conditions must be modified since the groin

1
no longer traps all the sand but bypasses some of it.

[f the same theory is applied to the beach downdrift of the groin
and if assumed that the wave diffraction effects are negligible, the
beach is eroded in a form symmetric with the updrift accretion.




When t = t., the end of the groin is reached by the shoreline and
sand begins to = be bypassed around the groin.

The boundary condition at the groin becomes oy = ¥ (constant) for
to>ot. The solution then becomes (Fig. 3):

ViKt

The curves representing the shoreline become homothetic with respect to

the axis oy ; 1.€.,

The area between the shoreline and the ox axis (oyox‘) is given by:

The area of triangular fillet, oy x_ , is

0| =
=
=
~+

oo
Hence,

oy x~

= 24 .}i 1 = _4_ = 1 27 (12)
oy a m ™
% VKt

and

ox" = 2X

o

The shoreline as described by equation (7) at time t =t
different from the shoreline defined by equation (11) at
shown in Fig. 4.

is slightly
t = tf as

1

The volume of sand defined by both curves is equal when the time t of

equation (7) is replaced by the time tf in equation (11) in such a way
that

t
L

2

] : 5=
16 < S tl = 0.62t1 . (13)

t
—
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Figure 3. Successive beach profiles updrift of a groin after sand
bypassing (from Le Mehaute and Brebner, 1961).
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Eq.11 (t'1 = (’.62t1 )

Eq.7 (t=t¢,)

X

Figure 4. Matching transition between solutions 1 and 2.




lherefore, the shoreline evolves initially as represented by equation

(7). Then, when t = tI , the shoreline keeps evolving as given by

equation (11), as if the time were t - U.SHt] . Then, the sediment dis-

charge, Q , bypassing the groin is equal to the incoming discharge
Q, minus the volume of sand which accumulates per unit of time.
C

KD&
Q.r) = Q - 7. fia
[ﬂK(t-().SStl)]
1
| S T
Q -
Qit) = QO 1 - 73 -
tana [ mK(t-0.38t,) ]
o 1
or again
' 0.638
Q(t) = Q I - .
& [(t/tl} ’ ().38] 1/2 : (16)

In dimensionless terms, the following values are obtained for equation
(16) (see Fig. 5):

te,

1 0.189
1523 0.315
LR 0397
2 0.498
3 0.605
4 0.665
) 0.703

It takes a long time before the value of Q approaches initial dis-
charge, QO , downdrift of the groin.

20
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The shoreline may be deduced at any time, t , by a homothetic trans-
formation about the oy axis from the knowledge of the shoreline at a
given time, t, , and also by applying the simple relationship (see Fig.3):

AD AC
=, Lol 5 E ( (17)

[t . 0.38'(1] dre [r, A ().38t1] e

The theory of Pelnard-Considere has been verified in laboratory ex-
periments with fairly good accuracy. The steady-state littoral drift,
Q0 , was obtained experimentally from preliminary calibration over a
straight shoreline. The results of these experiments are shown in Figs.
6 and 7. However, the shoreline predicted by theory is not expected
to be valid downdrift of the groin because of the influence of wave
diffraction around the groin tip. Some sand begins to bypass the groin
by suspension before t =t (see Fig. 5). Also, different boundary
conditions apply to different contour lines since the deeper contour
lines reach the end of the groin before the contour lines which are near
the shoreline, which implies the one-dimensional theory is no longer
entirely satisfactory.

Subsequently, Lepetit (1972) also conducted laboratory experiments
which verify the results of a numerical scheme based on the theory of

Pelnard-Considere. He used the law, Q= sin o Wcos a . Lepetit's ex-
periments were carried out with a very small angle between wave crest
and shoreline.

1. Refinement and Extensions of the Pelnard-Considere Model.

After Pelnard-Considere's contribution, the mathematical formula-
tion of shoreline evolution has proceeded at a slow pace. The first
refinements came in improving the longshore transport rate (littoral
drift) formula, in particular, modifying the expression relating sedi-
ment transport to incident wave angle.

Based on results from laboratory experiments performed by Sauvage
and Vincent (1954), Larras (1957) introduced the function f(a) = sin ;ﬁ 5
also used by Le Mechaute and Brebner (1961). New theoretical forms of
shoreline evolution are determined as solutions of the diffusion equa-
tion. Introduction of the relationship f(a) = sin %ﬁ instead of tana,
allows obtention of solutions valid for larger wave angles.

Of particular interest are the cases of shoreline undulations, since
assuming linear superposition, any form of shoreline may be approximated
by a Fourier series. The solution of the diffusion equation is then of
the form:
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y = Bc'ht cos Vk (x - x) (18)

which indicates that shoreline undulations tend to decay exponentially

and disappear with time. B defines the beach undulation amplitude at

time, t = o , and A is related to the wavelength, L , of this undula-
tion through the relationship:

(37 ): (19)
A = i K .

Shoreline evolution due to the sudden dumping of material at a given
point may be represented by:

K
-Xx" /4Kt
¢

) ' (20)

vVt

¥ K

Equation (20) gives the spreading of the sand along the shoreline since
o«
the integration ydx, which expresses the conservation of sedi-
-0

ment in the system, is a constant (see Fig. 8). This solution was also
mentioned by Pelnard-Considere.

It is interesting that much later, Noda (personal communication,
1974) investigated the same problem by taking an initial condition for
sand dumping.

Y = constant when lx|<X
y =t£(x,0) =

0 when |x|>x

as shown on Fig. 9. Using the functional relationship now commonly
accepted, f(a) = sin 2a , Noda found that the solution to the diffusion
equation to be:

(X - x) T B ! (23

2 VKt

erf

N =<

ro
§|
o
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Figure 8. Spreading of sand along a shoreline due to instantaneous
dumping at a point.

Figure 9. Sand dumping along a finite stretch of beach
(initial condition).
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Even though the initial condition is different from the previous one, the
solutions tend to be similar as time increases and are, therefore, both
applicable to the problem of shoreline sand dumping.

Also of interest is the solution, proposed by Larras (1957), of a
beach equilibrium shape between two headlands or groins described by the
equation:

3Q _

3s R

where s 1is the distance along the shoreline. This" indicates no sand
transport along shoreline configuration and, therefore, yields an
equilibrium to obtain:

ds = L cos = do (where L 1is a proportionality constant),

which gives

. 1l 11 3a
x = R [Sln —4_ L —g S1in —I (22)
5 o lla 11 . 3o
y = -R [LOb i + =3 cos —5'] .

Equation (22) defines a hypocycloidal form as might be found between two
headlands (see Fig. 10). R 1is a parameter which is related to the
relative curvature of the shoreline. When R » « | a straight shoreline
solution is obtained.

Another family of solutions was given by Grijm (1960, 1964). In
these two publications, Grijm used the most commonly accepted expression
for dependence of longshore transport on angle, f(a) = sin 2a , and
applied the theory to cases where the angle of incidence, « , is not
necessarily small. Subsequently, he established the kind of shoreline
which can exist mathematically under steady-state conditions.

Even though the theoretical approach obeys the same physical assump-
tion as the previous theory (except for the allowable range for the
angle of incidence), his mathematical formulation is not as simple. The
shoreline is defined with respect to a polar coordinate axis. The con-
tinuity equation is solved in parametric form, which is integrated
either by computer or by graphical methods. Details of Grijm's compu-
tations are not available.
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Figure 10. Equilibrium profile between two headlands.
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The main interest of the report lies in the results. When the long-
shore transport rate rcaches a maximum value (a = 45°) , the shoreline
tends to form a cusp; i.e., a cape as shown in Fig. 11.

Also of interest is Grijm's (1964) mathematical formulation for
different forms of river deltas for which he finds two possible solu-
tions, one with an angle of wave incidence everywhere less than 45°, and
another with the angle of incidence greater than 45°. The shoreline
curvature also depends upon the angle o« as shown on Fig. 11. The
problem remains indefinite since it is unknown which solution is valid.

The formulation of Grijm does not lend conveniently to numerical
adaptation.

Bakkers and Edelman (1964) also studied the form of river deltas, but
instead of using f(a) = sin 2a , as Grijm, they used the linear approxi-
mation as given by Pelnard-Considere; i.e., f(a) =z k., tana for
o < tana < 1.23 . They also investigated the case of large angle of
approach using the function-

k')

BldIN= t;nE' for 1.23 < tana < »

Bakker and Edelman's (1964) solutions are similar to that of Grijm;
however, they also found a periodic solution as Larras (1957) did:

-dQ o =aq % KA cosi kX . (23)

oL da 0

Equation (23) represents a sinusoidal shoreline for which the ampli-

dQ

tude of the undulations decreases with time if T is positive (i.e.,
S : d : :
for small angles of wave incidence), but increases when a%— is negative
(i.e., for large angle of wave incidence). The shoreline is thus un-
stable and the amplitude of the undulations increases. It can be
deduced that Grijm's solution for large angles of incidence is not
naturally found, since they are unstable and will be destroyed as small

perturbations trigger large deviations.

Bakker (1968a) implies that Grijm did not discover this instability
because he confined himself to solutions growing linearily with t in
all directions, while the exponential solution in t also exists.

Komar (1973) also applies a numerical scheme based on the Pelnard-
Considere approximation to the problem of delta growth. He found shore-
line shapes identical to Grijm in the case of a small angle of approach.

From these investigations, it is remembered that the Pelnard-
Considere approach is very powerful to predict shoreline evolution under
small angle of incidence. But under large angle of incidence, instabili-
ty of the shoreline makes it very difficult. Furthermore, the




SMALL ANGLE

RIVER
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(unstable)

Figure 11. Two theoretical forms of shoreline equilibrium of
river deltas.
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phenomenology of interaction between wave and shoreline is not accurately
defined mathematically.

2. Example of Shoreline Evolution.

Because of its importance, an example application of the theory of
shoreline evolution is presented. However, the example is slightly
modified to account for the generally accepted longshore transport rate
formula:

k 2 .
SN > sin 2 2.
Q = 15 r8 Hy Lg sin 20, (24)
where

Q = longshore transport rate cubic feet per second
o, = wave breaking angle
”b = breaking wave height

Cg = wave group velocity at breaking

k = a constant = 6.42 x 107>

pg = specific weight of seawater.

For the case of a groin perpendicular to shore, consider the average
beach conditions:

Hb = 5 feet
db = 6.4 feet
a = 5°
= 20 feet
Cg = \/gdb = 14.4 feet per second
Thus,
- H- C 5 2
K = —51—60g {b gCOS ab
_ 642 x10°% (64) 5 wa.a) _

0.92

8 x 20

Substituting into equation (10), yields:




~w~-4-!'-!!llF!I'I'.!--lIlH.lllI-.-.'-'-.l.-..-.-.'l'..'......'.l'....-...'l

2
g~ -3 2

t = —-——3—3*—- = 1.3 x 10 2 days.

4K tunfuo

~

In tabular form for various groin lengths,

2. £t 50 100 200 500
t1 days 3 13 52 325 |
Check:
For & = 50 feet Area Oxby = 1.56 x Area oxy |
2 2
o 2 0TS = 22,400 square feet 1
R e R T TR
2 tang tana
(o] (¢] i
Volume = (Area oxby) (D) = 4.5 x 105 cubic feet i
KD : :
Q =-— tan qu = 1.6 cubic feet per second
= i
4.5 x 105 5
t1 = —4———6—————-= 2.8 x 10" seconds = 3 days.

[TI. THE TWO-LINE THEORY OF BAKKER

One limitation of the solutions of Pelnard-Considere is the assump-
tion of parallel depth contours. Bakker (1968a) recalized that the one-
line theory of Pelnard-Considere and its subsequent development may, at
¥ times, lead to some inaccuracy, since beach slope variations along the
shore were not considered. Beach slope variations with respect to time
(summer-winter profiles) are not important in the long-term shoreline
evolution. Nevertheless, if an adequate onshore-offshore profile
response model was available, a suitable mathematical representation of
it could be developed (Dean, 1973; Swart, 1974).

Near coastal structures, the deviations of the model from prototype
conditions can be considerable. Pelnard-Considere finds that the accre-
tion and erosion patterns are symmetrical with respect to the groin as
shown on Fig. 12. However, in reality, the updrift profile becomes
steeper than the equilibrium profile and the sand moves scaward. The
b downdrift profile is flatter than the equilibrium profile and the sand




Coastline with Parallel Contour lines
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of movement
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Figure 12. Differences on shoreline configuration due to
onshore-offshore transport near a groin (from
Bakker, 1968b).
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is pushed shoreward by the waves. To reproduce the onshore-offshore
movement in a mathematical model, it is necessary to schematize the
coast by two or more contour lines instead of one.

Bakker's (1968b) two-contour-line model is not easily applied to
practical engineering problems encountered by designers, due to lack of
knowledge about onshore-offshore transport. However, his contribution
toward establishing a realistic mathematical model of shoreline evolu-
tion is of sufficient importance to deserve detailed review.

Bakker (1968b) assumes that the profile is divided into two parts
(Fig. 13). The upper parts extending to a depth, [)l , are affected by

the groin, the part below D, extends offshore to a depth of l)l + D

2

1
which is the assumed practical seaward limit of material movement.

The "equilibrium distance", w , is defined by a distance (y] - yl)
corresponding to an equilibrium profile under normal conditions; i.e.,

far away from the groins.

The onshore-offshore transport is defined by:

Qy =L (¥ = 3 ) (25)

: - ; : : -1 ;
where qy is a proportionality constant (dimension LT "). When
(y1 - yi + w) is positive, the transport is seaward; when negative, it

is shoreward. q.. has been found by Bakker for a part of the Dutch
coast equal to 1 to 10 meters per year for a depth D1 = 3 meters.
Letting Yo =¥ =% then, Qy = qy (y.1 - yz).

Now, following Pelnard-Considere; i.e., developing the expression
for the longshore transport rate Q 1in a Taylor series in terms of a ,

g 3Q
Q=Q + o (o - uO) £ e (26)

(¢]

which gives in linear approximations:

. dQ dy 5
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Figure 13. Notation for the two-line theory.




Defining
- 9Q
q = [aa’ , e ] (28)

then,

This equation is now applied to both lines, yl(x) and y,(x):

dy
3 etk (29)
Q= Qa1 =~ 9 e

dy
3 e (30)
Q = Q02 9 5%

The equation of continuity,

8L g B L (31)

ax ot

is modified by the term Qy due to onshore-offshore transport so that

an ayl
o i A Sy
3Q oy
2 i 2 :
. Qy = D5 b

Substituting equations (1), (2), and (3) for Ql’ QZ’ Qv gives:

b

it ) = D iil

ql 2 = q (yl - Y7 e 1 ot
X

(34)
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2 2
v ox” D~ Dl DZ sz BE
in which
q, * q
L N 2 37
[ =2
: ! 42 e
For simplicity, Bakker (1968b) assumes A which implies that
1 2
derivatives of the littoral drift transport with respect to
a: %% are proportional to depth D . Then, dividing
a = o
Q

equation (6) by D1 and 02 respectively, and subtracting, yield :

2
q 2 0 q,D I(ys)

q e 0 Sy M
D b2 D,D, ¥e) = —¢ (38)

where y, = Y1 =Yy o which is the equation for the offshore-onchore
transport qyy* . It is interesting that the offshore-onshore transport

is independent of the longshore transport.

Using the auxiliary variable,

q,D :
y =y, €xp = t ) (39)
: %10
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the diffusion equation is still obtained:

'y ay (40)

Bakker has applied his theory to a number of idealized cases, in-

cluding the behavior of a sand beach near a groin, assuming
B =9
oo (41)
B =N
The boundary conditions are:
a. Initial condition (t = o): Yo o= O for o<x«» and t = o
b. Then, when t>o:

1)
o

for x> and o<t<e (which implies an equilibri-

) y; =Y,
um profile)

The results are expressed in terms of lengthy power series, and are
represented graphically in Fig. 14.

The case of equilibrium beach profiles between groins was also
investigated by Bakker (1970).

Despite the complex refinement of the two-line theory, as initially
developed by Bakker, a number of phenomena that have significant in-
fluence on the beach profile are still neglected. Among these are:

a. The influence of rip current near the groins is twofold: rip
currents transport material from beach to the offshore and cause wave
refraction.
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b. The influence of diffraction on the leeward side of groins which
has an effect in the immediate vicinity of the shoreline.

(Z The effect of changing wave direction caused by refraction changes
the magnitude of longshore transport rate and the boundary conditions.

d. The nonlinearity in the trhnsport cquation is of minor importance
for small angles of incidence (for «> 45° , the coastline becomes
unstable as previously mentioned).

The two-line theory has been verified experimentally (Hulsbergen,
Van Bochove, and Bakker, 1976), and shows a trend identical to the ex-
perimental results. There are some differences at a small scale due to
secondary currents, breaking wave type, changes of wave height due to
small changes in morphology, etc. These, however ®gre short-term
rather than long-term evolution phenomena.

IV. THE EFFECT OF WAVE DIFFRACTION

The effect of wave diffraction was subsequently taken into account
by Bakker (1970). Initially, this was done for the one-line theory of
Pelnard-Considere and later for Bakker's two-line theory.

Pelnard-Considere's equations,

Ay BQO
Q = QO(X) - q(x) 5;— s gx) = TR (42)
o=
0
and
3y _ _gqlx) 3Qx) (43)
at D X

still apply. Q  and q are now functions of x , since both the
incident wave height and angle of approach vary along the shore with
X , because of wave diffraction.

Inserting the expression for Q in the continuity equation, yields:

ay 1 3y . 39 2y L i B (44)

BE s AD T X 9x D “dx
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It is assumed that the longshore transport rate, QO , 1s proportional
< 2 : ay -

to the angle of wave incidence, (ux - 5&1 , and the square of the rela-

tive wave height. The variation of wave height with x is given by the

diffraction theory of Putnam and Arthur (1948). The modification of

wave diffraction by wave refraction is neglected.

A similar approach has been proposed by Price, Tomlinson, and Willis

0.35
Y,

mitted energy which is also a function of x as is a (and ¥e is the

E sin 2a , where E 1s the trans-

(1972), who assume that Q =

submerged density of the beach material). Price, Tomlinson, and Willis
then obtain the one-line theory equation:

0.35 e 9& e 5 gg ahgs
YS sin 2a Ix + 2E cos 2a T + D 3 o (45)

which is solved numerically with

'_ s ) (46)
G = ax - tan X

Laboratory experiments were performed with crushed coal by Price,
Tomlinson, and Willis (1972). The theory giving the effect of wave
diffraction was verified by the experiments at the beginning of the
test. After a 3-hour test which may correspond to a prototype storm
duration, it is stated that the wave refraction pattern invalidates the
input wave data and a complex boundary condition developed at the up-
drift end of the wave basin.

Bakker's (1970) consideration of wave diffraction has been included
in his two-line theory where,

ay1
L Bl Y Bt B Al

ay2
W =% - %%

Neither the deepwater line, defined by yz(x,t), nor ¢, and Qo’ 5 1S

(48)

affected by diffraction. Fig. 15 presents typical results obtained from
this theory for the case of beach evolution near a groin and between two
groins.
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Figure 15. Effect of wave diffraction
(from Bakker, 1970).
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V. SPIRAL BEACHES

Hooklike beaches (Fig. 16) are common along exposed coasts and are
formed by the long-term combined effects of refraction and diffraction
around headlands. Yasso (1965) discovered that the planimetric shape of
many of these beaches could be fitted very closely by a scgment of log-
arithmic spiral; the distance, r , from the beach to the center of the
spiral increcasing with the angle 0O according to

pe= ro exp [O cot B] (49)

in which £ is the spiral angle.

Bremmer (1970) has shown the logarithmic spiral to give an excellent
fit for the profile of a recessed beach between two headlands.

The evolution of spiral beaches belongs to the geographical time-
scale domain (Sylvester and Ho, 1972). However, similar evolution has
also been observed over smaller time scales in consonance with the
definition of long-term shoreline evolution adopted in this study.

So far, only empirical rather than theoretical mathematical repre-
sentations of spiral beaches are available. The empirical approach has
been fruitful in providing the spiral coefficients £ as function of
wave angle, o , with the headland alinement (Fig. l6) (Sylvester and
Ho, 1972). The "indentation ratio'" (depth of the bay to width of open-
ing) also depends upon « and, in most cases, varies between 0.3 and
050 (Eig. )

There have been many attempts to explain this peculiar beach forma-
tion (Leblond, 1972; Rea and Komar, 1975). Leblond assumed that the
rate of sediment transport is proportional to the longshore currents as
given by the theory of Longuct-Higgins (1975). He also assumed that the
beach profile is not modified by crosion or accretion so that the con-
tinuity equation from the one-line theory can be used in a two-dimen-
sional coordinate systemn.

Thus, the variation in longshore current intensity with wave angle
will yield the rate of erosion or accretion.

Difficulties arise in expressing this variation of longshore current
in areas subjected to wave diffraction. Leblond (1972) points out that
classical wave diffraction theories are too complicated to be used in
his theoretical scheme. Another difficulty arises from the fact that
the barrier (headland) is not thin as it is assumed in the theory of
diffraction of Putnam and Arthur (1948). To account for this effect,
Leblond introduces an empirical correction coefficient to the thcory
of Putnam and Arthur over a two-dimensional network. The results of
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Figure 16. Hooked beaches.
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Figure 17. Indentation ratio for a range of wave
obliquity (from Sylvester and Ho, 1972).
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such a complex scheme, which is plagued with numerical instabilities,
are shown in Fig. 18. Even though the results show how oblique waves
initiate an erosion pattern that might eventually lead to the formation
: of hooklike beaches, they do not show that the beaches represent a good
fit to segments of a logarithmic spiral.

Rea and Komar (1975) developed an approach to overcome the numeri- |
cal instability encountered by Leblond. They combined two orthogonal,
one-dimensional arrays as shown on Fig. 19. In this way, deformation of
the beach can proceed in two directions without the necessity of a two-
dimensional array. The wave configuration in the shadow zone was
described by various simple empirical functions which resulted in beach
configurations fairly approximated by a logarithmic sffiral.

a “e

The main interest in the work of Rea and Komar (1975) is that they show
the lack of sensitivity of the shoreline evolution in the shadow zone to
the actual pattern of incident waves used. Also, the sensitivity of the
beach shape to thc energy distribution seems to be small.

VI. PROTOTYPE APPLICATIONS

The application of mathematical models of shoreline evolution to pro-
totype conditions is not very well documented in the literature. It is
certain that, at least in its simplified form such as given by Pelnard-
Considere, the method has been used by practicing engineers and designers. ,
It has been reported in unpublished reports but very little has appeared ]
in the open literature.

Weggel (1976) has formulated a numerical approach to coastal process-
es which is particularly adapted to prototype situations. In particular,
it includes:

a. A method for determining the water depth beyond which the onshore- |
offshore sediment transport is negligible. This information is particu- ,
larly useful in determining the quantity D wused in Pelnard-Considere's |
theory and others. It is also useful in determining the effect of a 1
change of sea level. Beach profile data are plotted on semilog paper |
and the base elevation of the most seaward point varied until an approxi-
mate straight line is obtained (see Fig. 20). He found D = 70 feet at
Pt. Mugu, California.

b. The effect of a change in sea level, a situation pertinent to the
Great Lakes, is also taken into account in a way proposed by Bruun
(1962). Using the principle of similarity of shoreline profile, the
shoreline recession Ay 1is related to the change of water level a by
the relationship (Fig. 21):

ab

Ay = TE—:—ET (50)
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¢c. A numerical scheme in which the effect of wave diffraction could be
included.

d. A statistical characterization of wave climate and longshore energy
flux.

Examples of recent prototype analysis and prediction of shoreline
evolution by mathematical modeling are Apalachicola Bay by Miller (1975)
and the Oregon coastline by Komar, Lizarraga-Arciniega, and Terich (1976).
Both studies are based on numerical schemes related to the Pelnard-
Considere (one-line) formulation.

VII. CONCLUSIONS

There are two methods of approach to the problems related to littoral
processes. The first one, typified by the previously discussed reports,
consists of analyzing global effects. The method essentially based on
establishing '"coastal constants'" for a model by correlation between
long-term evolution and wave statistics and subsequently, to use the
model for predicting future effects. It appears that this method is the
most promising for engineering purposes and could be termed the macro-
scopic view. The main results are summarized in Table 2.

The second approach, the microscopic view of the problem, consists
in analyzing sediment transport, step-by-step, on a rational Newtonian
approach, starting with wave motion, threshold velocity for sand trans-
port, equilibrium profiles of beaches, etc., until the individual com-
ponents can be combined into an overall model to predict shoreline
evolution. The second method or scientific approach has not progressed
to the point where it can be applied to engineering problems in the
foreseeable future.

However, much progress has been made in the last 5 years toward
understanding the hydrodynamics of the surf zone through application of
the '"radiation-stress'" concept. In theory, establishing a reliable
mathematical model of surf zone circulation should permit a determina-
tion of the resulting sediment transport. Practically, however, inter-
action between a movable bed and the surf zone circulation, and the
inherent instability of longshore currents limit this approach to the
realm of research. Among the problems that make this approach difficult
are the refraction and diffraction of water waves, uncertainty in pre-
dicting rip current spacing, and the effect of free turbulence generated
by breaking waves on the rate of sediment suspension.

Finally, the complexity of mathematical formulation, based on the
radiation-stress concept, makes it difficult to use as a predictive tool
when dealing with forcing functions expressed by statistical multi-
directional sea spectra. This method is promising in explaining local
effects (e.g., near groins), rhythmic topography, beach cusps, and short-
term evolution due to unidirectional sea states. All these effects are
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Date

1956

1957

1960

1961

1964

1964

1968

1970

1972

1972

1972

1972

1973

1976

1978

Table

Author

Pelnard-
Considere

Larras

Grijm

Le Mehaute,
Brebner

Grijm

Bakker,
Edeiman

Bakker

Bakker,
Breteler,
Roos,

Price,
Tomlinson,
willis

Lepetit
Svlvester,
Ho

Leblond

Hulshergen,

van Bochove

Bakker

Weggel

2. Summary of mathematical models for shoreline evolution.

Sediment transport

Experimental

Application to ideal

alongshore Validity Theoretical developments, verification cases
o ax Very small angle Diffusion equation Laboratory Groins
closed-form solution with pusice
SR R g o
LU el S ax Seall angle (<257) Diffusion equation, No Groins-sudden dump
closed-form solution sinusoidol undulation,
equilibriva shape
between groins
sin 2a Sin all angles. In Nonlinear differential No Forms of deltas
case of large angle equation
an inconsistency in
the assumption
;E small
in 18
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or graphical method
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Table 2. Summary of mathematical models for shoreline evolution.--continuecd

Variation of beach Moditacation Variable
slope taken into Effect of y wave Variation of Effect of Application to
account Diffraction refraction direction sea level rip currents  prototype cases Main Conclusions
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superimposed on the long-term evolution for which an analysis can be
done independently.

Among the significant recent reports leading toward understanding of
surf zone circulation and related bottom topography are: Bowen and
Inman (1969) who advocate the presence of edge waves as a cause of rip
currents and beach cusps; Hino (1974) who states that rip currents are
the result of mobility of the sand bed and hydrodynamic instability;
Sonu (1972) and Noda (1972) demonstrated that a perturbation on bottom
topography causing waves to refract and have varying intensity along the
shore induces a variation in radiation stress which in turn enhances rip
currents; tinally, Liu and Mei (1976) applied the radiation-stress
concept to a groin perpendicular to shore and to an offshore breakwater.

These investigations offer at least partial answers to a number of
important problems, important in understanding shoreline processes. It
definitely indicates that the radiation-stress approach holds the poten-
tial key to understanding many types of nearshore currents, heretofore
unexplored. [t is also evident that the study of surf zone hydrodynamics
will rapidly reach a plateau if sand-water interaction problems are not
mastered, and at this stage, these can only be considered empirically.
Determinism leaves off with the inception of turbulence.

Even though the dynamics of nearshore currents hold the key to
understanding of beach processes, application of the methodology based
on radiation stress to investigate shoreline cvolution mathematically is
still beyond the state-of-the-art.

Both approaches could be pursued in parallel and the results of the
scientific approach could slowly be incorporated into a practical
engineering model.

Conclusions based on the literature survey, as summarized in
Table 2, are:

a. There is sufficient laboratory verification to give credibility to
a mathematical approach to the study of shoreline evolution for small
angles of wave approach.

b. For large angles of incidence, there is a lesser chance at arriving
at a successful formulation since shorelines are then unstable and the
resulting shoreline evolution could not be predicted without th
initiation of more basic research beyond the present state of knowledge.

c. Even though no field measurements subsequent to mathematical pre-
dictions have been found in the literature, many practicing engincers
have applied the theory of Pelnard-Considere (1956) to predict shore
evolution by taking into account variable wave climate. The method is
easy to apply and provides valuable information.
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d. Engineering applications to prototype cases based on more sophisti-
cated approaches such as given by the two-line theory of Bakker (1968b)
are not known. These more sophisticated approaches can be currently
considered as belonging to the realm of research rather than of engineer-
ing practice.

e.- Local effects, diffraction, rip currents, wave refraction and inter-
action between these effects are, at present, still not so conveniently
formulated to be used by practicing engineers. Introduction of these
effects, if and when important in the mathematical formulation, is
feasible but will require further investigation.

f. A simple numerical scheme that can be used by design engineers and
planners and which includes theoretical or empirically all important
effects could be developed. Effects that should be included in the
mathematical model are wave diffraction, loss of sand by rip currents
along groins, sea (lake) level variation, and beach slope variation
near groins.

g. The introduction of the concept of radiation stress in the mathe-
matical formulation is not recommended at this time, but research
related to this approach should be pursued in view of the eventual
input that subsequent results could have on then existing operational
mathematical models.
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